
https://prodinner.aspnetawesome.com
1

ProDinner – ASP.net Core Awesome demo application

We presume that you will have the ProDinnerCore solution open while reading this so that you could

read and look at the source.

Project structure:

 Core – entities

 Data – data access layer, contains the configuration for EF Core (DbContext)

 Service – contains services that use the DbContext, and some infra utils like

password hashing and image editing.

 WebUI – web user interface

Data Access
For data access Entity Framework Core is being used. All the entity properties are named the same as

the column names in the DB. Also the relationships are made accordingly to the EF default

conventions. Table names are determined based on the DbSet<T> properties names on the

ProDbContext. Because we have many to many relationships for dinner <-> meal and user <-> role

and this isn’t fully supported in EFCore we have some custom configuration inside

ProDbContext.OnModelCreating.

The connection string is in appsettings.json and in Startup.cs we have a call to:
services.AddDbContext<ProDbContext>

https://docs.microsoft.com/en-us/ef/core/modeling/relationships

Service Layer
Here we do the CRUD operations using the ProDbContext from Data. We also have some logic for

caching, hashing passwords and resizing and saving images.

Cache
We have a CacheManager defined in our Service layer, inside it the entities dependencies are

hardcoded so for example if there’s a change for the Meals besides emptying the cache for Meals we

also empty the cache for Dinners because a Dinner has many Meals.

All the Create and Edit (Delete is also Edit, sets IsDeleted = true) are done in CrudService<T> and
inside each method that creates or edits an entity we call cache.ChangeAction which will reset the
cache, in the case of Create it won’t reset the cache for dependent entities (if we create a new meal,
we don’t empty the cache for Dinners).

https://docs.microsoft.com/en-us/ef/core/modeling/relationships

https://prodinner.aspnetawesome.com
2

Multilanguage User Interface
It is done using resource files. We’re using a single resource Mui for all our localization. The resx files

are located in WebUI/Resources, a path that is specified in Startup.cs:

services.AddLocalization(opts => { opts.ResourcesPath = "Resources"; });

In order to use one single resource file for all our views we have a SharedViewLocalizer which you

can see added in ViewImports and Startup.cs.

In the controller we use IStringLocalizer<Mui> (see DataController.cs for example), and for
DataAnnotations see Startup.cs call to AddDataAnnotationsLocalization.

For use in js we generate a dictionary in ClientUtil.GetClientDict and set this dictionary on the site
(site.js) client object in _Layout.cshtml

ClientUtils GetCulture HtmlHelper extension is used to reference the correct awedict.js in
_Layout.cshtml.

And finally in AwesomeConfig.cs we set Settings.GetText, this will do all the server side
localization for the awesome html helpers. AwesomeConfig is called in Startup.cs.

Background Worker
There is RestoreTimedHostedService, which you can see registered in Startup, it periodically

restores deleted entities based on some basic rules. It is a singleton but it needs CrudService which is

a scoped instance that’s why we use ServiceProvider to create a scope, and use that scope to resolve

the CrudService on each work action.

WebUI
Has the controllers, views, scripts, content (css, images) and some stuff in Global.asax for app

initialization and error handling also web request start and authenticate request.

Viewmodels

All the viewmodels are named Entity+Input, there is a base Input class which has the Id property.

Also there are lots of attributes defined on the properties, they are used for validation and for the

MUI. The int and DateTime properties from entities have a corresponding nullable property defined

here (int?, DateTime?), Nullable is used because this way we don’t get 0 and 1/01/0001 as default

values in textboxes, also 0 as selected key for dropdowns.

User Interface

On all the pages where we have crud functionality we use the Awesome Grid, sometimes with

CustomRender which makes it look more like a list. And on some pages we do the Create/Edit using

popups while on others using the Grid’s inline editing functionality.

https://prodinner.aspnetawesome.com
3

All our crud demos are based on these demos:

https://demo.aspnetawesome.com/GridCrudDemo

https://demo.aspnetawesome.com/GridInlineEditDemo

The difference is that instead of just a Delete button, when the user is logged in as admin we need to

show a restore button instead of Delete if the item is deleted. So because the value of the grid cell

depends on the value of the row model (specifically IsDeleted property) and we didn’t want to

generate the html on the server side and pass it in the row model, we used ClientFormatFunc and we

generate the html in js. You can see in ProUtils.DeleteColumn and ProUtils.InlineDeleteColumn will

reference a js function (ClientFormatFunc) in proUtils.js to render the html.

The delete button will call the awe.open for the PopupForm that was initialized in the view using
ProUtils.InitCrud or CrudHelpers.InitDeletePopupForGrid.
The restore button will call the awe.oc for the call initialized using the InitCall html helper in the View
or inside the ProUtils.InitCrud.

https://demo.aspnetawesome.com/GridCrudDemo
https://demo.aspnetawesome.com/GridInlineEditDemo

